Actin Cytoskeleton Affects Schwann Cell Migration and Peripheral Nerve Regeneration
نویسندگان
چکیده
Actin cytoskeleton regulates many essential biological functions, including cellular development, shape, polarity, and motility. The organization of actin cytoskeleton has also been associated with numerous physiological and pathological conditions, for instance, the elongation of axonal growth cone during peripheral nerve regeneration. However, the spatio-temporal expression patterns of actin cytoskeleton-related genes and the specific roles of actin cytoskeleton following peripheral nerve injury have not been fully revealed. To address this question, we made rat sciatic nerve crush surgery, collected injured sciatic nerve stumps, analyzed RNA deep sequencing outcomes, and specifically studied two significantly involved canonical pathways that were related with actin, actin cytoskeleton signaling and regulation of actin-based motility by Rho. By using bioinformatic tools and qRT-PCR, We identified and validated differentially expressed genes in these two signaling pathways. Moreover, by applying actin polymerization inhibitor cytochalasin D to sciatic nerve crushed rats, we studied the in vivo effect of cytochalasin D and demonstrated that inhibiting actin polymerization would delay the migration of Schwann cells and hinder the repair and regeneration of injured peripheral nerves. Overall, our data revealed the changes of actin cytoskeleton-related genes following peripheral nerve injury and stated the importance of actin cytoskeleton during peripheral nerve regeneration.
منابع مشابه
Cdc2-mediated Schwann cell migration during peripheral nerve regeneration.
Schwann cell migration facilitates peripheral nerve regeneration after injury. We have recently found increased activation of Cdc2 kinase in regenerating sciatic nerves. Here we show that Cdc2 phosphorylation of caldesmon regulates Schwann cell migration and nerve regeneration. A robust but transient increase in Cdc2 expression was found in cultured Schwann cells prepared from the sciatic nerve...
متن کاملElectrophysiological Study of Sciatic Nerve Regeneration Through Tubes Seeded with Schwann Cells
A B S T R A C TIntroduction: Peripheral nerve injury is a common disorder and leads to permanent neurological defects. Schwann cells have been shown to have nerve repair after being transplanted in peripheral nerve injury. The aim of this study was to determine the beneficial effect of allograft Schwann cells on electrophysiological outcome after transection of the sciatic nerve in rats.Methods...
متن کاملIntrinsic Migratory Properties of Cultured Schwann Cells Based on Single-Cell Migration Assay
The migration of Schwann cells is critical for development of peripheral nervous system and is essential for regeneration and remyelination after nerve injury. Although several factors have been identified to regulate Schwann cell migration, intrinsic migratory properties of Schwann cells remain elusive. In this study, based on time-lapse imaging of single isolated Schwann cells, we examined th...
متن کاملSchwann cell spectrins modulate peripheral nerve myelination.
During peripheral nerve development, Schwann cells ensheathe axons and form myelin to enable rapid and efficient action potential propagation. Although myelination requires profound changes in Schwann cell shape, how neuron-glia interactions converge on the Schwann cell cytoskeleton to induce these changes is unknown. Here, we demonstrate that the submembranous cytoskeletal proteins αII and βII...
متن کاملMicroRNA-210 contributes to peripheral nerve regeneration through promoting the proliferation and migration of Schwann cells
Peripheral nerve injury impacts the daily life of affected individuals. MicroRNA (miR)-210 is a multifunctional miR and has effects on the proliferation, migration and differentiation of cells. However, whether miR-210 has effects on peripheral nerve regeneration has remained elusive. In the present study, the miR-210 levels in a rat model of sciatic nerve injury were evaluated by reverse-trans...
متن کامل